从不同位置(从上面、前面、左面)观察物体的形状。
方法:先数(看到几个面),再看它有(几层),每层有(几排),把(相同方向的面)画在一起。
从(不同位置)或(同一位置)观察物体,所看到的图形(可能一样),也(可能不一样)。
从(不同的位置)观察,才能(更全面)地认识一个物体。
数一数有几个小正方体的方法:先数(每层有几个),再加起来。
四年级上册数学
六年级上册数学计算题
二年级数学
条形统计图的特点:要清楚地表示出各种数量的多少时用条形统计图。
折形统计图的特点:
不但要表示出各种数量的多少,还要能清楚地看出各种数量的增减变化情况时用折线统计图。
扇形统计图的特点:要清楚地表示出各部分数量占总数的百分之几时用扇形统计图。
平均数:平均数代表这组数据的“一般水平”。求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数,多数情况下用平均数,但如果受到极大或极小数据影响就不能用了。
中位数:中位数代表这组数据的“中等水平”。求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平
均数就是中位数。有极大、极小数据影响不能使用平均数时可以使用。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。众数代表“多数水平”。当众数的数据数量占总数量的大多数时可用。
小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
加法交换律:两个数相加,(交换)加数的位置,(和)不变。
a+b=b+a
加法结合律:三个数相加,可以先把(前两个数)相加,再加上第三个数;或者先把(后两个数)相加,再加上第一个数,(和)不变。
(a+b) +c=a+(b+c)(数的位置不变,小括号位置改变)
(加法交换律)和(加法结合律)有时要(结合起来)使用更简便。
78+56+22+44
=(78+22)+(56+44) (既交换了加数的位置,又增加了小括号)
=100+100
=200
直线:没有端点,可以向两端无限延长。
射线:只有一个端点 可以向一端无限延长。直线和射线无法比较长短。
线段:有两个端点。射线和线段都是直线的一部分。两点间,线段最短。
平行线:在同一平面内不相交的两条直线叫做平行线。
垂线、垂足:两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。
角:锐角(大于0o小于90o的角)、直角(等于90o的角)、钝角(大于90o而小于180o的角)、平角(等于180o的角)、周角(等于360o的角)。
小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777 …… 简写作0.5302302 …… 简写作。
